Comparison study of the gas-phase oxidation of alkylbenzenes and alkylcyclohexanes
نویسندگان
چکیده
The goal of this paper is to present new experimental results obtained during the study of the gas phase oxidation of ethyl-benzene, n-hexyl-benzene, ethyl-cyclohexane and n-butyl-cyclohexane which belongs to two molecule families present in diesel fuels: alkylbenzenes and alkylcyclohexanes. Experiments were carried out in a jet-stirred reactor over the temperature range 550–1100 K. The new results have been compared with existing literature data obtained for alkylbenzenes and alkylcyclohexanes with alkyl chains of different size to highlight the influence of the chain size on the reactivity. The comparison showed that both alkylcyclohexanes exhibit reactivity at both lowand hightemperatures such as cyclohexane and that the reactivity was similar whatever the size of the alkyl chain. For the three compared alkylbenzenes, important differences were observed in the reactivity at low-temperature: ethylbenzene started to react only above 750 K, while other compounds reacted from 550 K. The comparison also showed that alkylbenzenes were less reactive than their alkylcyclohexane homologs and that the production of aromatic compounds known to promote soot formation was also significantly larger for alkylbenzenes. This paper also presents the effect of the equivalence ratio and pressure on the reaction kinetics. In a general manner, a decrease of the fuel/air ratio significantly increased the reactivity and the carbon monoxide selectivity below 800 K, but decreased the selectivity of heavy oxygenated products, the atmospheric degradation of which can be a source of toxic oxygenated products. This decrease had a more limited effect on the reactivity at higher temperatures but disfavored the production of unburned species (oxygenated species like acetaldehyde and unsaturated hydrocarbons which are known to be soot precursors). A pressure increase from 1 to 10 bar enhanced the reactivity of all these hydrocarbons over the full studied temperature range, with a start of the reaction at lower temperatures. A larger production of toxic oxygenated products was observed with increasing pressures, while low pressures promoted the formation of soot precursors. Alkylbenzene results were generally well reproduced by simulations using literature models.
منابع مشابه
Mass spectrometry of alkylbenzenes and related compounds. Part II. Gas phase ion chemistry of protonated alkylbenzenes (alkylbenzenium ions)
Mass spectrometry and ion chemistry of alkylbenzenes, today, is much more than the gas-phase reactions of their radical cations and their prominent fragment ions, such as C7H7+ and C7Hs+'. Indeed, the gas-phase chemistry of gaseous ions originating mainly from the electron impact (EI) ionization of alkylbenzenes has been investigated extensively for more than 35 years and has revealed to us num...
متن کاملCharacterization of high molecular weight biomarkers in crude oils
High-temperature gas chromatography (HTGC) has enhanced our ability to characterize hydrocarbons extending to C120 in crude oils. As a result, hydrocarbons in waxes (> C20) have been observed to vary signi®cantly between crude oils, even those presumed to originate from the same source. Prior to this development, microcrystalline waxes containing hydrocarbons above C40 were not characterized on...
متن کاملThe Gas Phase Oxidation of Acetaldehyde Reaction Mechanism and Kinetics
The mechanism of the low temperature oxidation of gaseous acetaldehyde was investigated in the temperature range of 1 50-400?°C. The minor, intermediate and major products were identified and measured quantitatively by sampling directly into the ionization chamber of an MS10-C2 mass spectrometer from the reactor. The formation of H2O, CO, CO2, HCOOH, H2, HCHO, CH3COOH and CH3OH as the major pro...
متن کاملAssessment of effective factors on bacterial oxidation of ferrous iron by focusing on sweetening natural gas
In this study, the effects of some factors on bacterial growth and ferrous oxidation rates were investigated by Acidithiobacillus ferrooxidan in 250 ml shake flasks. One factor at a time (OFAT) design approach was used for preliminary evaluation of various factors affecting the process, such as pH, initial ferrous and elemental sulfur concentrations, shaker agitation rate, and liquid to flask v...
متن کاملStatistical Optimization of Liquid Phase Oxidation of Benzyl Alcohol over Efficient Cobalt Promoted Vanadyl Pyrophosphate Catalysts by Box-Behnken Design
Vanadium phosphorus oxides (VPO) has been applied as a heterogeneous catalyst in gas phase oxidation reactions and its application is very limited in liquid phase. In this study a series of cobalt-doped vanadium phosphorus oxides (VPO-Co) catalysts with different loading of Co (0.01-1.0 mol ratio of Co/V) were prepared. Oxidation of benzyl alcohol was studied in the liquid phase over VPO and VP...
متن کامل